翻訳と辞書
Words near each other
・ Complete First Live
・ Complete First National Band Recordings
・ Complete gacha
・ Complete game
・ Complete garment knitting
・ Complete Genomics
・ Complete glucose breakdown
・ Complete graph
・ Complete Greatest Hits
・ Complete Greatest Hits (Foreigner album)
・ Complete Greatest Hits (The Cars album)
・ Complete group
・ Complete Heyting algebra
・ Complete History Volume One
・ Complete History Volume Two
Complete homogeneous symmetric polynomial
・ Complete icosahedron
・ Complete Idiot's Guides
・ Complete income reporters
・ Complete Index to World Film
・ Complete information
・ Complete intersection
・ Complete intersection ring
・ Complete Last Live
・ Complete lattice
・ Complete linkage
・ Complete Linux Installer
・ Complete list of authors published as UK first editions by Collins Crime Club
・ Complete list of downloadable songs for the Rock Band series
・ Complete list of Rock Band Network songs


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Complete homogeneous symmetric polynomial : ウィキペディア英語版
Complete homogeneous symmetric polynomial
In mathematics, specifically in algebraic combinatorics and commutative algebra, the complete homogeneous symmetric polynomials are a specific kind of symmetric polynomials. Every symmetric polynomial can be expressed as a polynomial expression in complete homogeneous symmetric polynomials.
==Definition==

The complete homogeneous symmetric polynomial of degree ''k'' in n variables ''X''1, ..., ''X''''n'', written ''h''''k'' for ''k'' = 0, 1, 2, ..., is the sum of all monomials of total degree ''k'' in the variables. Formally,
: h_k (X_1, X_2, \dots,X_n) = \sum_ X_ X_ \cdots X_.
The formula can also be written as:
: h_k (X_1, X_2, \dots,X_n) =
\sum_
X_^ X_^ \cdots X_^.
Indeed, ''lp'' is just multiplicity of ''p'' in sequence ''ik''.
The first few of these polynomials are
: h_0 (X_1, X_2, \dots,X_n) = 1,
: h_1 (X_1, X_2, \dots,X_n) = \sum_ X_j,
: h_2 (X_1, X_2, \dots,X_n) = \sum_ X_j X_k,
: h_3 (X_1, X_2, \dots,X_n) = \sum_ X_j X_k X_l.
Thus, for each nonnegative integer k, there exists exactly one complete homogeneous symmetric polynomial of degree k in n variables.
Another way of rewriting the definition is to take summation over all sequences ''ik'',
without condition of ordering i_p \leq i_ :
: h_k (X_1, X_2, \dots,X_n) = \sum_
\frac X_ X_ \cdots X_,
here ''mp'' is the multiplicity of number ''p'' in the sequence ''ik''.
For example
: h_2 (X_1, X_2) = \fracX_1^2 +\fracX_1X_2 +\fracX_2X_1 + \fracX_2^2 = X_1^2+X_1X_2+X_2^2.
The polynomial ring formed by taking all integral linear combinations of products of the complete homogeneous symmetric polynomials is a commutative ring.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Complete homogeneous symmetric polynomial」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.